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Dynamics of nematic loop disclinations
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The shrinking of defect loops under the influence of boundary conditions in a confined geometry is studied.
Using a suitable model for a nematic disclination, we calculate a director field that minimizes the Frank-Oseen
free energy@F. C. Frank, Discuss. Faraday Soc.25, 19 ~1958!; C. W. Onseen, Trans. Faraday Soc.29, 883
~1933!#. With this static model we find by means of a dissipation principle a linear dependence of the loop
radius on time, explaining recent measurements performed on polymeric liquid crystals.
@S1063-651X~97!05712-7#
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I. INTRODUCTION

The continuum theory of liquid crystals usually employs
director fieldn indicating the local mean orientation of th
molecules. Equilibrium configurations are obtained by mi
mizing the well-known Frank-Oseen elastic free ene
@1,2#. In an actual physical situation the director field is n
smooth everywhere, but it exhibits various kinds of disco
tinuities, calleddisclinations. Nematic liquid crystals even
owe their name to the typical threadlike defects, theline
disclinations often found in this state of matter@3,4#.

Similar structures can also be observed in various biolo
cal patterns@5# and ferromagnets@6# and they have been
adopted by cosmologists in models explaining the distri
tion of matter in the early universe@7#. Consequently, the
dynamics of disclinations has attracted wide interest an
mathematical theory concerned with theflow by curvature
@8# and, in the higher-dimensional case, with themotion by
mean curvature@9# has been developed.

A major advantage that nematic liquid crystals yield f
the study of disclinations stems from the experimental po
of view. The preparation of liquid-crystal cells with variou
boundary alignments is technically well understood and ty
cal relaxation times range from seconds for small-molec
liquid crystals to several hours for polymeric liquid crysta
Furthermore, due to the birefringence depending on
alignment, the dynamical process can easily be observed
tically.

Experiments on the shrinking of defect loops@10# have
been known for a long time and some years ago even q
titative measurements were performed using the sm
molecule nematic liquid crystal 4-cyano-48-n-pentylbi-
phenyl. The major result, in agreement with theoretical c
siderations, is that the radius of the defect loop scales w
time asr}(t02t)a, wherea50.5 @11,12#.

More recent experiments with poly~1,4-phenylene-2,6-
benzobisthiazole! have yielded a different result: The defe
loops vanish following a linear decay law, for whicha51
@13,14#. The alignment at the boundary of the cell was alo
a prescribed direction and the area enclosed by the lo
when viewed under crossed polarizers, appeared to be ho
561063-651X/97/56~6!/6834~9!/$10.00
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geneous, precisely as the region outside it. This is compa
with a closed twist disclination loop.

We show that this behavior can be explained by tak
into account not only the elastic energy associated with
actual thread and proportional to its radiusR, but also a
contribution due to the twist of the director field in the loop
interior that is proportional toR2. Such a contribution is
important for large loops in thin cells, where this part of t
energy cannot be neglected with respect to the energy of
disclination line.

In this paper we proceed as follows. In Sec. II we intr
duce a coordinate system fit to describe disclination lines
this framework we produce a director field that minimiz
the elastic free energy of a circular loop disclination in t
limit of long threads and within a special class of admissi
fields that we show to be meaningful. Starting from the sta
model thus obtained, in Sec. III we apply a dissipation pr
ciple, whence we arrive at an ordinary differential equati
for the loop radius. In Sec. IV we compare our results to
experimental evidence and discuss the connection with
vious predictions. We do not restrict attention to circu
loops, though our analysis mainly focuses on them. For lo
of arbitrary shape, our model predicts an evolution law d
ferent from the flow by curvature of a plane curve, who
properties still remain to be fully understood.

II. STATIC MODEL

A. System of coordinates for the loop

There are essentially two types of line disclinations
nematic liquid crystals~see@15#, Sec. 7.1!: namely, theaxial
and thetwist disclinations. The disclinations of the first typ
are characterized by a director field perpendicular to the
rection of the line. If the disclination is supposed to lie alo
the z axis, the orientation can be given in the for
n5coswex1sinwey andw is found to be

w5mc1w0 , ~1!

wherec is the polar angle in cylindrical coordinates,w0 is a
constant, and the winding numberm takes the values
6834 © 1997 The American Physical Society
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2 ,62, . . . @1#. The occurrence of half-intege
winding numbers is a consequence of the nematic symme
i.e., the physical identity of the alignmentsn and2n.

In this paper we are concerned with the second type
defect lines. Here the director field has components o
along the line itself and one fixed direction perpendicular
the disclination. Minimizing the Frank-Oseen elastic free e
ergy gives again the solutions~1!, with w the angle designat
ing the director in the appropriate plane.

More specifically, we consider a liquid crystal betwe
two parallel orienting layers. Cartesian coordinates are c
sen so that the plane of the cell coincides with thex-y plane
and the origin is selected so that the upper and lower bou
ing plates havez coordinates2H and1H, respectively. The
disclination loop is supposed to lie entirely in the midpla
between the two plates and it is described by a smooth,
knotted curve. A curve parallel to it, in the interior of th
plane region it encloses, will play a central role in our mod
We call it the thread and represent it asq(s)5x(s)ex
1y(s)ey , wheres is taken to be the arc length of the curv

Since we consider pure twist disclinations, we further
sume that the orientation is parallel to the bounding pla
everywhere, thus allowing for a description of the alignme
in terms of a single anglew with n5coswex1sinwey . The
anchoring conditions on the plates are then prescribed in
form

w~x,y,6H !50. ~2!

The Frank-Oseen elastic free-energy density is calculate
the one-constant approximation as

f 5
K

2
~¹n!25

K

2
~¹w!2. ~3!

An analytic expression for the equilibrium structure satis
ing the Euler-Lagrange equation

Dw50 ~4!

is known for circular loops@10#. It is given as the sum of a
Fourier series whose coefficients are evaluated in term
the hyperbolic Bessel functions of index 0 and 1: It is rep
sented in closed form only at distances from thez axis large
compared with the cell thickness. Unlike@10#, our paper
aims at a description of the shrinking dynamics of loops
arbitrary shape; thus we need a simpler model, which will
based on an approximate equilibrium solution fit to mim
that in @10#, but such to be represented explicitly.

First, we assume that the distortion of the director fie
caused by the disclination takes place only in the vicinity
the thread in a more or less tubular regionT. OutsideT the
alignment is supposed to be homogeneous: In the oute
gion we have simplyw[0, while inside the threadw twists
by the anglep between the two plates.

We introduce the angleu(s) to describe both the uni
tangent to the curveq(s)

t~s!5x8~s!ex1y8~s!ey5cos~u!ex1sin~u!ey ~5!

and the unit normal
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n~s!52sin~u!ex1cos~u!ey , ~6!

which points outward. Since t8(s)52u8sin(u)ex
1u8cos(u)ey5u8n(s), we have that the curvatures of the
curve is given by

s~s!5u8~s!. ~7!

Each pointp in T has a unique description in the form

p~s,j,z!5q~s!1jn1zez , j>0, ~8!

providedsj,1. The equation of the thread is clearlyj[0,
z[0. ~See Fig. 1.!

We record here for later use the expressions for both
Jacobi determinant of the change of variab
(x,y,z)°(s,j,z) and the gradient of a smooth scalar-valu
function f of (s,j,z). They are

]~x,y,z!

]~s,j,z!
512sj ~9!

and

¹f 5
1

12sj

] f

]s
t1

] f

]j
n1

] f

]z
ez . ~10!

B. Simple model for a straight disclination line

To construct the director field in the vicinity of the defe
line, we consider a cross sectionC through T. Since the
thread is supposed to lie in the midplane between the
plates, the problem is symmetric inz and it suffices to look at
the upper half of the cell where the director makes half of
total twist.

We first attack a two-dimensional problem in the pla
(j,z), which corresponds to a straight disclination line. T
region where the director is simply twisted by the anglep
and has no defect lies in the half plane withj,0; the defect
is found atz50 andj5d and the highest point ofT is at
z5h. This means that the following conditions are pr
scribed on the anglew:

w5H 0, j50, z>h

p

2
, z50, 0<j,d

0, z50, j.d,

~11!

FIG. 1. Coordinate system for a disclination loop. Each point
the vicinity of the thread is uniquely determined by specifyings,
which parametrizes the curveq(s), and its position in the local
coordinate frame$n,ez%.



o

n

na
s

on

th

e
th

o
le
f a

s to

on
e
-

ur-
ht
is-
e-

of
nc-
we

to

gn
en

6836 56ANDRÉ M. SONNET AND EPIFANIO G. VIRGA
whered andh are parameters to be determined.
We find it convenient to introduce the new system

coordinates (g,l) in the quadrantj.0, z.0 as follows:
g5arctan(z/j)P@0,p/2# is the angle between thej axis and
the straight line connecting the origin to the point (g,l). The
other coordinatel parametrizes the lines of equal alignme
for the director in such a way that asl ranges in@0,̀ #,
w5f(l) ranges in@0,p/2# and

ful5050, lim
l→`

f~l!5
p

2
. ~12!

The new coordinate lines are then the straight lines ema
ing from the origin, along whichg is constant, and the line
of equal alignment for the director, along which bothl and
w are constant. In this system of coordinates a curve al
which w is constant is labeled by a value ofl: In polar
coordinates (g,r), it can be represented asr5rl(g) and so

j5rl~g!cos~g! ~13!

and

z5rl~g!sin~g!, ~14!

with

rl~0!5d, r0S p

2 D5h, lim
l→`

rlS p

2 D50 ~15!

~see Fig. 2!. Our endeavor with the new coordinates has
effect of replacingw as a function of (g,r) with the pair of
functionsf(l) andrl(g), which suffice to describe a larg
class of twisted director alignments in a cross section of
tubular regionT.

To compute the elastic free energy, we need to know b
the Jacobi determinant of the change of variab
(j,z)°(g,l) and the gradient in the new coordinates o
scalar-valued functionf . The former is

]~j,z!

]~g,l!
52rl

]rl

]l
. ~16!

FIG. 2. Coordinate system in terms of the lines of equal ali
ment. Only the upper half is depicted. The lines of equal alignm
meet at the defect withr0, corresponding tow50, indicating the
outer boundary of the tubular regionT.
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Introducing the local pair of orthogonal unit vectors$er ,eg%
as

er5cos~g!ej1sin~g!ez ~17!

and

eg52sin~g!ej1cos~g!ez , ~18!

the gradient off takes the form

¹f 5
1

]rl /]l

] f

]l
er1S 1

rl

] f

]g
2

]rl /]g

rl~]rl /]l!

] f

]l Deg .

~19!

Since, by the very definition off, w depends onl only, we
get

~¹w!25S f8

]rl /]l D 2F11S ]rl /]g

rl
D 2G , ~20!

wheref8:5df/dl. Insering this into Eq.~3! and integrat-
ing in bothg andl yields the elastic free energy stored inT
per unit length of the disclination:

Ft52
K

2E0

p/2E
0

`

2f82
rl

]rl /]lF11S ]rl /]g

rl
D 2Gdg dl.

~21!

The minimization of this energy in the general case seem
be intractable. Thus we choose a special form forrl ,
namely,

rl~g!5e2~4l/p2!g~p2g!r0~g!, ~22!

which relates all lines of equal alignment to that withl50.
For l.0 the curverl appears as an exponential retracti
of r0, done in such a way thatrl crosses at right angles th
line g5p/2 for all l.0, wheneverr0 does so. Such a re
quirement will ensure that all lines of equal alignment inT
can be smoothly joined to those in the region that is s
rounded byT when we shall no longer consider a straig
disclination. We have clearly restricted the class of adm
sible director fields around the disclination, but not too s
verely: Still the curver0 that determines the shape ofT is
left free; moreover, once this is known, all other curves
equal alignment are known as well, but the values the fu
tion f takes upon them are still to be determined. Thus
believe that our ansatz, though special, is fit to be applied
a wide variety of alignment fields.

It follows from Eq. ~22! that

]rl

]g
5e2~4l/p2!g~p2g!r081

4l

p S 2

p
g21D rl ~23!

and

]rl

]l
52

4

p2
g~p2g!rl , ~24!

wherer08 :5dr0 /dg. Hereafter, in addition to Eq.~15!, we
also require

-
t
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56 6837DYNAMICS OF NEMATIC LOOP DISCLINATIONS
r08S p

2 D50, ~25!

which ensures that the lines of equal alignment inT can be
matched in a differentiable way to those in the region
simple twist (j,0). These equations reduceFt to a func-
tional of bothf andr0:

Ft5KE
0

p/2E
0

` f82

4

p2
g~p2g!

H 11F4l

p S 2

p
g21D

1
r08

r0
G2J dg dl. ~26!

Letting

h:5
2

p
g ~27!

and

y0~h!:5 lnr0S p

2
h D ~28!

leads to

Ft5
2

p
KE

0

1E
0

` f82

h~22h!Fp
2

4
1@2l~h21!1y08#2Gdh dl.

~29!

Further defining

I 0 :5E
0

`

f82dl, I 1 :5E
0

`

lf82dl,

I 2 :5E
0

`

l2f82dl, ~30!

we easily perform the integration with respect tol, arriving
at

Ft5
2

p
KE

0

1 1

h~22h!

3Fp2

4
I 014~h21!2I 21I 0y08

214~h21!I 1y08Gdh.

~31!

Since the integrand does not depend ony0 explicitly, the
Euler-Lagrange equation forFt in this form can readily be
integrated once~see@16#, Chap. IV! and then it reads

2I 0y0814I 1~h21!5ch~22h!, ~32!

c being an arbitrary constant. In terms ofy0, the boundary
conditions forr0 become

y0~0!5 lnd, y0~1!5 lnh, ~33!

and
f

y08~1!50. ~34!

Using the latter in Eq.~32!, we see thatc50 and thus

y0852
2I 1

I 0
~h21!. ~35!

Integrating this and taking care of Eq.~33! yields

d

h
5e2I 1 /I 0 ~36!

and

y0~h!5 lnh1~h21!2ln
d

h
. ~37!

This leads to

r0~g!5hS d

hD ~2g /p21!2

. ~38!

Evaluating Eq.~31! on the minimizer, we obtain the fol
lowing expression for the energy per unit length of a strai
disclination:

Ft5
p

4
KH FdF I 01

16

p2S I 22
I 1

2

I 0
D G22

16

p2S I 22
I 1

2

I 0
D J ,

~39!

where

Fd :5 ln
pd

r c
52E

hc

1 dh

h~22h!
~40!

is obtained by excluding from the integration of otherwi
divergent integrals a core region with radius
r c5dgc5(p/2)dhc . As customary, the energy of the co
can be taken into account by adjustingr c appropriately~see
@3#, p. 171!.

Still the task of determiningf(l) remains to be achieved
In principle, this can be done by minimizing the expressi
for the free energy in Eq.~39!, where I 0, I 1, and I 2 are
functionals off. We postpone this problem to the followin
subsection, where we take a further step towards the c
struction of our static model by considering a circular disc
nation loop. Requiring that the functionf in T matches that
defined in the disk-shaped region surrounded byT will allow
us to find the director field that minimizes the free ener
within our class.

C. Model for a circular loop

The alignment in the interior of the thread is such that
director somehow twists from the anglep/2 with ex to 0 asz
goes from 0 toh. In order to give the alignment in terms o
f(l), note that, by Eqs.~22! and~24!, for g5p/2 to eachl
in @0,̀ # there corresponds a value ofz given by

z~l!5rlS p

2 D5he2l. ~41!
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Since the director twist is the same function ofz throughout
the region enclosed by the thread, a contribution proportio
to the areaA of this region is to be added to the elastic fr
energy stored inT: By Eq. ~41!, it becomes

FA52A
K

2E0

hS ]w

]z D 2

dz5A
K

hE0

`

f82eldl. ~42!

The Euler-Lagrange equation of this functional is easy
solve: It yields

f~l!5
p

2
~12e2l!, ~43!

which describes a linear twist@see again Eq.~41!#. Using
this, we find that for a givenh the minimum ofFA is

FA5
p2

4
A

K

h
. ~44!

This conclusion applies whatever the shape of the reg
enclosed byT may be. Let us further consider the case o
circular thread of radiusR. More precisely, this curve is to b
thought of as the locus wherej[0, z[0 in the coordinate
system (s,j,z). Since the loop shrinks without leaving a d
fect point after it, we take]w/]s50. Also with aid of Eq.
~9!, the total free energy then becomes

F5
pKR2

h E
0

`

f82eldl

1
K

2E0

LE E
C
~¹w!2~12sj!dj dz ds

5
pKR2

h E
0

`

f82eldl1pKE E
C
~¹w!2~R1j!dj dz,

~45!

whereL52pR is the length of the thread ands521/R is
its curvature, as in our parametrizationn is the outward nor-
mal. ForR@H, the largest contribution is from the area i
side the thread. Thus we takef as in Eq.~43!, so that this
part of the energy is minimized. SinceFA is proportional to
h21 and h<H, for large loops the minimum ofFA is at-
tained whenh5H. Note that having foundf as a function of
l does not amount to knowing the free-energy density sto
in T, which also depends on the lines of equal alignment@see
Eq. ~20!#.

The energy contribution arising from the tubular regionT
bears an integrand proportional toR1j. In minimizing this
part, we neglectj with respect toR, which amounts to omit-
ting the influence of the thread curvature on the discli
tion’s structure. This is certainly reasonable for large valu
of R and leads to the solution found in Sec. II B. Withf as
in Eq. ~43!, we have

I 05
p2

8
, I 15I 25

p2

16
, ~46!

which by Eq.~36! yields
al

o

n

d

-
s

d5
h

Ae
, ~47!

which is the distance between the thread and the disclina
loop. Inserting this into Eq.~38! and using Eq.~22!, for this
model we easily express the curves of equal alignmen
functions ofh:

rl~h!5de~h222h!~l21/2!5he~h222h!~l21/2!21/2. ~48!

To compute the total free energy, we still have to evalu
the integral

Fs :5E E
C
~¹w!2j dj dz. ~49!

By use of Eqs.~43! and ~48! and the change of variable
(j,z)°(h,l), Fs can also be written as

Fs5
p3

4Ae
hE

0

1
eh2h2/2cos

p

2
h

h~22h! H 1

212h2h2

1S 2~h21!

p D 2F 8

~212h2h2!3
2

4

~212h2h2!2

1
1

212h2h2G J dh, ~50!

where the integration inl has already been performed. Th
integral, which is too complicated for an analytical approa
cannot even be computed numerically because of the di
gence ath50. We treat it in the following way: We write
the integrand as a linear combination of nondivergent te
and 1/h(22h), making use of the identities cosa51
22sin2a andex5(ex21)11 and decomposition into partia
fractions. The divergent part is thus isolated, and by exc
sion of the core region from the integration, we obtain
contribution proportional toFd5 ln(pd/rc). The remaining
convergent parts are then evaluated numerically. We fin
get

Fs5hS p314p

16Ae
Fd22.13D . ~51!

Collecting all above contributions, within our model we giv
the total free energy of a ring disclination the form

F5
p3KR2

4h
12pRFt1pKFs

5
p2

4
KH pR2

h
1S p214

4
Fd22DR

1S p214

4Ae
Fd22.71D hJ , ~52!

whereh is still a free parameter. Minimizing this energy wit
respect toR/h, we would arrive at



te

56 6839DYNAMICS OF NEMATIC LOOP DISCLINATIONS
FIG. 3. Curves of equal alignment for the comple
model. The circular thread is located in the planez50. The
twist region has a radiusR and the defect is found at a
distanceR1D from the loop’s center.
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R

h
50.551A0.1110.67ln

ph

r cAe
. ~53!

The logarithm being typically of order 10, this givesR'3h.
For long threads this requirement cannot be met becaush
cannot exceed the cell’s thickness. Thus we takeh5H, as
for the minimum ofFA , which makes the distortion fill the
entire cell. The director field we have constructed is depic
in Fig. 3, whereD:5H/Ae is the equilibrium distance be-
tween the thread and the loop.

D. Model for a noncircular loop

Our model is also fit to describe a noncircular disclinatio
loop. To see this, first recall that Eq.~42! expresses the free
energyFA stored in the region inside the thread, regardle
of the shape of this curve. As to the energy stored inT, the
same argument leading to the first line in Eq.~45! shows that
it can be given the form

FT :5
K

2E0

LE E
C
~¹w!2~12sj!dj dz ds, ~54!

where the lengthL of the thread is now a functional ofq(s).
Since this is a closed curve, in our parametrization it satis

E
0

L

s~s!ds522p. ~55!

Thus here we replace Eq.~45! by

F5
KA
h E

0

`

f82eldl1
K

2E E
C
~¹w!2~L12pj!dj dz.

~56!

If then the approximationA/H@L@H is valid, repeating
verbatim the line of thought followed in Sec. II C, for all
h<H we arrive at
d

s

s

F5
p2

4
KHAh 1

1

2pS p214

4
Fd22DL

1S p214

4Ae
Fd22.71D hJ , ~57!

whenceh5H, as in the above approximationF turns out to
be a decreasing function ofh.

III. DYNAMICS

A. Dissipation principle

To describe the dynamics of our model, we start from
dissipation principle@17#, which, when flow effects are ne
glected, takes the form

Ḟ1W50 ~58!

and states that the rate of change in the elastic free energḞ
in a fixed region in space is compensated for by the ene
W dissipated in the same region by the viscous torque ac
on the director. In the absence of flow and with the usu
approach of neglecting the inertia of the molecular reorie
tation, the dissipation per unit volume has the simple form

w5g1S ]w

]t D 2

, ~59!

whereg1 is the rotational viscosity.
Making the further assumption that during the time ev

lution the system traverses only equilibrium configuratio
as described by Eqs.~43! and ~48!, the dissipation principle
~58! leads to an evolution equation for the disclination loo
which we first derive for a circle and then extend to a gene
shape.

B. Dissipation for a circular loop

The first problem to be faced in calculating the dissipati
is to obtain an expression for]w/]t. As time elapses, the
alignment changes only inside the tubular regionT, which
follows the motion of the circular thread. The shape of
cross sectionC remains unaltered as it slides radially towar
the loop center: Bothh and d retain the same equilibrium
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values obtained above, which do not depend on the thr
radiusR. Consider the value of the alignmentw at the point
in T represented by

p~s,j,z!5q~s!1jn~s!1zez . ~60!

It is conveyed unchanged asT shrinks, so that along the
trajectory followed byp

05
dw

dt
5

]w

]t
1¹w•ṗ. ~61!

Now, for a givens, ṗ is the same for allj and z, as every
cross section ofT moves with velocityvn5Ṙ:

ṗ5Ṙn~s!. ~62!

Computing the gradient ofw as indicated in Eq.~10!, we
thus have

]w

]t
52Ṙ

]w

]j
. ~63!

When expressed as a function of (h,l), w does not depend
on h; to compute the partial derivative ofw with respect to
j, we solve the linear system of equations

]w

]l
5f85

]w

]j

]j

]l
1

]w

]z

]z

]l
,

]w

]h
505

]w

]j

]j

]h
1

]w

]z

]z

]h
, ~64!

where it is again understood that]w/]s50 because the loop
shrinks to a homogeneous alignment. The solution of
~64! is

]w

]j
5

2f8

prl

]rl

]l

S rl

p

2
cos

p

2
h1

]rl

]h
sin

p

2
h D ,

]w

]z
5

2f8

prl

]rl

]l

S rl

p

2
sin

p

2
h2

]rl

]h
cos

p

2
h D . ~65!

Making use in Eq.~65! of rl and f(l) as derived in our
static model, we arrive at

S ]w

]t D 2

5
f82Ṙ2

rl

]rl

]l
~h222h!

3Fcos2
p

2
h1S 2

p
~2l21!~h21!sin

p

2
h D 2

1
4

p
~2l21!~h21!sin

p

2
hcos

p

2
hG . ~66!
ad

.

The total dissipationW is then obtained by integration
over T:

W52pg1E E
C
S ]w

]t D 2

~R1j!dj dz

524pg1E
0

p/2E
0

`S ]w

]t D 2

rl

]rl

]l
~R1rlcosg!dg dl

52p2g1Ṙ2E
0

1E
0

`

p2

4
e22l

h~22h!

3Fcos2
p

2
h1S 2

p
~2l21!~h21!sin

p

2
h D 2

1
4

p
~2l21!~h21!sin

p

2
hcos

p

2
h G

3S R1d e~h222h!~l21/2!cos
p

2
h Ddh dl. ~67!

Again the integration inl is easily done, while that inh
requires the same skill applied to Eq.~50!: The singular part
needs to be isolated and the convergent remainder is
grated numerically. The result is

W5
p4

8
g1Ṙ2S ~FD21.13!R1~FD21.23!

H

Ae
D , ~68!

with FD :5 ln(pD/rc)5ln(pH/rcAe) analogous toFd in Eq.
~40!.

C. Shrinking circles

Inserting the energy~52! and the dissipation~68! into the
dissipation principle~58!, we obtain the following differen-
tial equation forr :5R/H:

r 1a152t ṙ ~a2r 1a3!, ~69!

where the coefficients are defined by

a15
p214

8p
FD2

1

p
, ~70!

a25FD21.13, ~71!

a35
1

Ae
~FD21.23! ~72!

andt is a relaxation time depending on both the material a
the cell size:

t5
pg1H2

4K
. ~73!

This equation is easily integrated by separation of variab
to yield
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t02t

t
5a2r 2~a1a22a3!lnS 11

r

a1
D . ~74!

Clearly for large values ofr this implies a linear dependenc
of the thread radius on time, which amounts to the sa
conclusion for the loop radius, as in our model the two dif
by a constant. ForFD510 we give a plot of the solution in
Fig. 4 and we represent in Fig. 5 the scaling exponent

a:5
d ln t

d ln r
5

r

t~r !

dt

dr

as a function ofr . It must be noted that the assumptio
made in deriving Eq.~69! render the solution valid only fo
values ofr *3.

D. General evolution equation

When the disclination loop fails to be circular, we ma
apply essentially the same arguments as in Sec. III B to c
pute the total dissipation. Now, however, at any given tim
the cross sections ofT do not slide all with the same velocity
That through the pointq(s) on the thread moves alongn(s)
with the normal velocity of the thread at that pointvn :5q̇•n,
which in general changes withs. Thus, in Eq.~66! we need

FIG. 4. Time evolution of the thread radiusR scaled toH. Here
t050.

FIG. 5. Scaling exponent of the solution depending on the
dius. The scalara5d ln t(r)/d ln r is the slope oft versusr in a
bilogarithmic plot.
e
r

-
,

only substitutevn
2 for Ṙ2 to get the appropriate expression f

(]w/]t)2. Using this in the integral

W5g1E
0

L

dsE E
C
S ]w

]t D 2

~12sj!dj dz, ~75!

we readily arrive at

W5
p3g1

16 E
0

L

~a22a3sH !vn
2ds, ~76!

wherea2 and a3 are as in Eqs.~71! and ~72! and L is the
actual length of the thread. Clearly, Eq.~76! is valid, pro-
vided thata22a3sH.0 along the curve, as is required b
the inequality 12sj.0, which follows from Eq.~9!: A
convex curve, for whichs,0, would satisfy both of these
equations.

The total free energyF is given by Eq.~57! with h5H
andd5D. To compute its time derivative we observe tha

Ȧ5E
0

L

vnds ~77!

and

L̇52E
0

L

svnds, ~78!

to conclude that

Ḟ5
p2K

4H E
0

L

~12a1sH !vnds, ~79!

where a1 is as in Eq.~70!. The dissipation principle then
reads as

E
0

L

vnH p3g1

16
~a22a3sH !vn1

p2K

4H
~12a1sH !J ds50

~80!

and it is satisfied along any portion of the curve, provid
this evolves in time according to the equation

vn5
H

t
g~sH !, ~81!

with

g~sH !:5
a1sH21

a22a3sH
, ~82!

wheret is the relaxation time defined by Eq.~73!.
Sinceg fails to be linear, the evolution described by th

equation is different from the flow by curvature of a pla
curve, which applies whenvn}s. We conjecture, however
that the same qualitative properties of this motion apply
that described by Eq.~81!, as long as the functiong is in-
creasing. As made precise in@8#, where previous results
valid only for convex curves@18–20# were first extended to
all plane curves, the flow by curvature shrinks a curve t
point, making it round in the limit. In other words, a nonco
vex curve becomes convex as it shrinks. We expect the s

-
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conclusion to apply to the flow predicted by our model, p
vided the normal velocityvn is higher at points with highe
curvature. It is easily seen that the functiong is increasing
whenevera1a22a3.0: A direct computation resorting to
Eqs. ~70!–~72! shows that this inequality is satisfied for a
values ofH/r c , the only parameter on which the coefficien
ai depend.

Finally, there is a distinctive feature of the flow describ
by Eq. ~81! that the flow by curvature does not posse
Sinceg(0),0, also a point where the curvature is infinites
mal would have a finite velocity. This requires care in de
ing with the singularities, such as corners and points of s
contact, that a curve may develop in its evolution. It
known from @8# that no singularity arises in the flow b
curvature: We do not know whether the same theorem
plies also to the flow we have derived.

IV. CONCLUSIONS

We have constructed a model director field that descri
a twist disclination line confined to a thin cell with plan
boundary anchoring. First the case of a closed circular
clination loop has been treated via a dissipation princip
Our main result was to show that for large threads the lo
radius shrinks linearly with time. Then, within a suitab
approximation, we also treated noncircular loops: For th
the dissipation principle led to a flow that formally diffe
from the flow by curvature of a plane curve, though we e
pect the qualitative properties of both flows to be the sam

The linear shrinking law is in qualitative agreement w
recent measurements on polymeric liquid crystals. The
perimental setup, however, differed in one respect from
model. While we assumed the loop to lie in the midplane
a thin cell, in the experiment the disclinations were found
the proximity of the plates such that ‘‘the distance of t
loops from a surface@was# smaller than their size’’~see@13#,
p. 206!.

This observation is consistent with what is known abo
twist disclination loops, namely, that though the minimal e
.

-

:

-
f-

p-

s

s-
.
p

-
.

x-
r
f

t
-

ergy is attained if the loop lies in the midplane, since t
minimum is not very pronounced, threads may be fou
away from the center@10#. As, according to our model, the
ratio of the loop diameter to the cell’s thickness determin
the shrinking law, a direct quantitative comparison to expe
ments requires a well-defined distance between the loop
the boundary.

The case of small loops without confining boundaries c
not be treated directly within our model because of the
sumptions made in deriving the minimizing configuratio
Nevertheless, it is easy to obtain the correct shrinking l
via the dissipation principle. The free energy connected w
the disclination is then proportional to the length of t
thread

F}R ~83!

since the contribution stemming from the enclosed area
proportional toR2/H, which becomes negligible both fo
large cells (H→`) and small loops (R→0). A similar ar-
gument holds for the dissipation, which is proportional to t
length of the disclination and the square of its shrinking v
locity Ṙ,

W}Ṙ2R. ~84!

Consequently, by Eq.~58!,

ṘR5const, ~85!

which yieldsR}(t02t)0.5 in agreement with the experimen
tal evidence.
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